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STABILITY OF ROTATION OF A DEFORMABLE SPACECRAFT* 

L.V. DOKUCBAYEV 

Using Lur'e'sapproachto the description of non-small motions of a 
deformable system /l/, we derive by Kane’s method /2/ the general equations 
of orbital motion of an elastic spacecraft filled with fluid. Generalizing 
the results of /3-S/ using the Thomson-Tate-Chetayev theorems, we obtain 
the conditions of asymptotic stability of rotation of a deformable 
spacecraft allowing for damping. 

The method used for stability analysis is described in general in 

/3/. This method is employed to derive sufficient conditions of stability 
of uniform rotation of a thin elastic shell filled with fluid /6/. 

1. The motion of a spacecraft relative to the inertial space may be characterized by 
large displacements and velocities, while the deformations are usually small. We introduce 
a locally fixed body system of coordinates Or,r,r* so that for small deformationstherelative 
displacements of the spacecraft particles is small. The relative position of the spacecraft 
particles in the undeformed state is determined by the radius-vector p(z,,z~,~~), and their 
relative position in the deformed state by the radius-vector r = p +u (z,, z,, za, t). The 
motion of the body system of coordinates relative to the inertial space is determined by the 
translational velocity vector v0 of the pole 0 and the vector of the angular velocity of 
rotation o of this system about its pole. The vectors of absolute velocity and acceleration 
of a spacecraft particle are given by 

v= vg +o 1' r + u' 

a = vO' -t- Q) x v. + 0’ x r + 0 x (0 x r) + 20 x U’ + U” 
(1.1) 

The forces acting on a volume element dV of an elastic body are expressible in terms of 
the stress tensor 8: 

f, = div 8 dV (1.2) 

A similar internal force field is produced by the forces of normal pressure and shearing 
stress in the fluid. The mass gravitational forces acting on the mass element dm are given 
by the approximate formula 

f6 = (g + @[3g-ag(r.g)- r]) dm (1.3) 

where g is the vector of local free fall acceleration , and 62' is the orbital angular velocity. 
Application of D'Alembert's principle to the mass element dm of a deformable body 

produces the equation 
adm = f, + f, (1.4) 

which is also true for systems with non-holonomic constraints. It may be supplemented with 
the condition of continuity of the medium and with boundary conditions on the walls of the 
cavity and on the boundary of the elastic medium. 

Various discretixation techniques are applied in order to write the equations of motion 
of a system in a form convenient for integration. Solutions of boundary-value problems of 
elasticity theory and hydrodynamics are usually available only for simple constructions. We 
correspondingly define a complete system of functions cp,, which approximate the free oscil- 
lation modes of the real construction. The relative displacements of the construction 
particles are represented by a quadratic series expansion /I/ 

u=cPn (%* r2* %)qn (f) + I/* (Pnmt51* *sv %)QR (t)Qm(t) (1.5) 

where the functions cp,,,, are expressible in some way in terms of (Pi. 
Kane /2/ made an attempt to combine the physical lucidity of D'Alembert's principle with 

the procedure of automatic elimination of constraint reactions in Lagrange equations of the 
second kind. Kane's method of constructing the equations of motion is quite simple and has 
definite advantages for non-holonomic systems , since it does not require the introduction of 
undetermined Lagrange multipliers. In the linear case, it is identical with the Bubnov- 
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Galerkin method. 
Assume that the motion of the system is described by the quasicoordinates nk? which 

determine the translational and rotational motion of the entire system, as well as its defor- 
mations. The vector which appears as the coefficient of the quasivelocity n,' is called the 
partial velocity of the quasicoordinate nk. It may be determined from (l.l), (1.5) as the 
partial derivative of V with respect to the quasivelocity nk'. Then the left- and the right- 
hand sides of Eq.cl.4) are scalar-multiplied by the corresponding velocity and integrated over 
the entire volume V occupied by the system particles. Combining the three equations for the 
quasicoordinates :of translational motion, we obtain a vector equation of forces, and for the 
quasicoordinates, of rotational motion we obtain a vector equation of momenta. For all the 
other coordinates, we obtain an infinite svstem of ordinarv differential eauations. If we 
introduce the apparent 
system takes the form 

acceleration vector-j, then the equation of motion of the deformable 

mj+ox(f0xL)+o'xL+20xL'+L"=P+ (1.6) 
S2'[3g_'g(L .g)- L] 

(J.cu)'+oX(J.o)+Lxj+oxG++G*'= 

M+3Q'g-']g x (J.g)] 

Qn + l/, Q’ 13g-Q.(J .g) - tr J] 

(j=v,‘+coxv,-gg; n,m=i,2,...) 

Here we use the following notation for the expansions in the coordinates qa of the 
expressions for the static moment L, the inertia tensor J, the angular momentum vector G* and 
the kinetic energy T* of relative motion: 

L =srdm=L, + L,,,g, +%L,g,g, 

J=S[(t.r)E--:tldm=~,+(J,,+J~)rl,+J,,q,q, 

G* = S t x u’dm = (G,, + G,,,,q,,,) q,,’ 

T* = ‘,I2 s u’ . u’ dm = 11, ~nmqn’q,,,’ = 

l/I (%,a + hmflk + h,kIqk~d ‘?n’%,,’ 

(1.7) 

The tensor summation convention over dummy indices is adopted, and the dyadic vector 
product is denoted by a colon:. Theexternalforces, momenta, and generalized forces are 
denoted by P, M, and Q,, respectively. The coefficients c,,, are determined by the 
rigidity of the elastic construction , and m is the mass of the entire deformable system. 

2. We will investigate the stability of stationary rotation of a free deformable system. 
As the Lyapunw function of a holonomic system, we may use the Hamiltonian, defined equal to 
the sum of the kinetic energy and the changed potential energy. As shown in /3/, the 
perturbed motion asymptotically tends to stationary rotation: if the changed potential energy 
has an isolated minimum, dissipation is complete. Stability of the stationary motion of a 
system without dissipation, i.e., gyroscopic stabilization, may be achieved even if there is 
no minimum, provided the number of negative Poincar; stability coefficients is even. 

Dissipative forces in a mechanical system are taken into account by the right-hand sides 
of Eqs.(l.6). If dissipation is complete, then the system Hamiltonian is a strictly decreas- 
ing function. However, for a free construction, the dissipative function determined by 
internal dissipation of energy by deformations is only semidefinite. 

It was shown in /4/ by using the first integrals of the angular momentum that a free 
mechanical system experiences complete (propagating) damping in all the non-cyclic coordinates, 
since there are no perturbed paths in the neighbourhood of stationary rotation which are 
identically free energy dissipation. Therefore, by Krasovskii's theorem, the stability of 
stationary rotation of a mechanical system with damping can be inferred from the positive 
definiteness of the changed potential energy. 

We will represent any vector as the product of the three-dimensional row of the unit 
vectors of the axes Ot,qzs by the column matrix of its three components along the correspond- 
ing axes. We replace 'the vectors r,o,j,P,M, L, G*, etc., with the three-dimensional column 
matrices r, o. 1, P, M, L, G*. and the tensors J with square matrices J. We denote the 
infinite-dimensional columns of the coordinates Qn* L,,, On, Go,, Jo, by 9, L Qt 6, J,, and 
the infinite-.dimensionalsquarematriceswith the elements a,,, c,,, L,,, G,,, J,, by A, C. 

L,, G,, Jr, respectively. Ignoring the non-linear terms in small deformations, we rewrite 



20 

the system of Eqs.(1.6) in matrix form as 

tuj- L*o' +oD(o'L)+ 2oL~+L"= P 

(Jw)' + L*j + d (Jo) + o"G* + G*' = I%' 

(2.1) 

The superscript b denotes skew-symmetric matrices formed by the vector product rule. 
In the case of stationary rotation without external forces (other than dissipative 

forces), this system may be linearized in the perturbations of the generalized coordinates. 
Select the body system of coordinates O~,%~, so that its origin coincides with the centre 
of mass of the undeformed body , and the axes are parallel to the principal axes of inertia. 
The angular velocity of stationary rotation wO is assumed to be a finite quantity directed 
along the Ox, axis; all other coordinates are assumed small. We introduce special notation 
for the components of the following matrices along the three axes: 

m=I”“;““l (2.2) 

Eliminating the apparent acceleration j and the cyclic coordinate or*,we obtain a system 
of equations of perturbed motion in the variable ZT =I1 O,o,qII in matrix form, 

M,z" + G,z' + K,z = -F,z' (2.3) 

The square matrices are deteirmined by the scalar coefficients of the equations of motion 
(1.6) or (2.11, 

I 
J aa 0 d,,= - gs* 

I I 
0 0 0 

Go =*o 0 J,, d,,T -t g, T , F,=O 0 0 

g2 gs G* 001; 

_+A_%&_ BI.GT 
311 

C, =_.!$ _ do,, + hlaT 2 ldaT I “‘yz* 

(2.4) 

(2.5) 

The system of Eqs.(2.3) is expressed in quasicoordinates , and its matrices do not 
possess the required symmetry. If we pass from quasicoordinates to generalized coordinates 
81, (Cardan angles) using the formulas 

0r = a0 + er', ~0~ = 8%' - 0,8,, 0a = e3- + 0,e, (2.6) 

we obtain a linearized system of Lagranqe equations of the second kind in the new variable 

- hT 
4sT 
G I 
F,=F, 

(2.7) 

(2.8) 

BY the Thomson-Tate-Chetayev theorems,if M,.isa symmetric positive definite matrix, G, 
a skew-symmetric matrix, F, a symmetric non-negative matrix without the complete dissipation 
property, and K, a symmetric matrix, then the zero solution of the system (2.7) is asymp- 
totically stable when K, is positive define and unstable when K, has negative eigenvalues, 
independently of G, and F,. The matrix K1 is the Hessian of the changed potential energy. 
Therefore, the condition of positive definiteness of K1 is identical with the condition for 
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a minimum of the changed potential energy. Completeness of damping in the linear system (2.7) 
with semi-definite matrix F, can be established using the controllability property of this 
system. For damping to be complete, it is necessary and sufficient that the controllability 
matrix is of full rank. 

All the theorems on the stability of the zero solution of the linearized system (2.7) 
are automatically extended to the zero solution of system (2.31, since the variables y and z 
are linked by a non-singular linear transformation (2.6). From formulas (2.4) and (2.8) we 
see that if the first and the second column in the matrix K. are interchanged, then this 
matrix will be identical with K; apart from a constant factor oo2. Therefore, thedeterminant 
of the matrix K, is equal to the determinant of the matrix K, apart from a constant factor 
ooa. 

Asymptotic stability requires positive definiteness of the matrix K,, andbythe Sylvester 
criterion this implies that all the main diagonal minors should be positive. The first and 
the second upper minors provide the necessary condition of stability of rotation of the 
deformable system around its principal axis of the maximum moment of inertia in the unper- 
turbed state. All the lower main minors, defined by the matrix C,, are positive, because an 
elastic system with positive-definite potential deformation energy is conservative. 

The matrix K, can be partitioned into blocks 

(2.9) 

Since the matrix b* is square and non-singular, the inverse 'C+-' exists. Therefore, 
the computation of the determinant of the matrix K, can be reduced to the computation of 
lower-order determinants: 

det K,= det II A- DTC-lD 0 * 
D C* II 

=detC,det (A- DTC;‘D) (2.10) 

The first factor det C, is positive. Therefore, the sign of det K, is identical with 
the sign of the second factor in (2.10). Similarly, the two smaller main minors of the 
matrix K, are representable as a product of two factors, the first of which is positive. 

If the potential deformation energy is expressed in terms of the principalmodes of the 
rotating construction, then the matrices C, and C,-l are diagonal. In the case, using the 
notation (2.2), we have the following identities: 

Putting 

(2.11) 

(2.12) 

we obtain the conditon for stability in the form 

Az > 8, As> 8, A, > 1, Aa> 1 (As - I)(& - 1) - t> 0 (2.13) 

By the Cauchy inequality , the non-negative quantity t is always less than or equal to 1. 
The equality sign applies for cl,, = d,,. 

In Fig.1, in the plane of the parameters As, As, the region of asymptotic stability 
(horizontal shading) lies above the curve 1 and corresponds to the last condition in (2.13). 
The first two inequalities, defining the first quadrant , and the next two inequalities, 
defining the area inside this quadrant , are a priori satisfied in the shaded region above 
curve 1. The explicit form of series (2.11) and (2.12) , which occurs in the sufficient 
condition of stability (2.13), provides a direct estimate of the error associated with the 
high-frequency cutoff of the elastic oscillations in the initial system of equations of motion. 
When the higher frequencies are cut off, we obtain a somewhat larger stability domain due to 
the errors in computing t, and t,. 

On the other hand, applying the Routh-Hurwitz criterion to the initial system (2.31, we 
find that a necessary condition of asymptotic stability is the positivity of the free term in 
the characteristic equation, which is equal to det K, s 0-I det K,. In order to ensure the 
sufficient conditions of asymptotic stability, we also require the positivity of all the main 
minors of the Rurwits determinant, which are quite cumbersome already with three degrees of 
freedom. we have shown above that in the case of free mechanical systems with propagating 
damping and a Hamiltonian that does not depend explicitly on time, the condition det K, > 0, 
and therefore the condition dst K,> 0 is necessary and sufficient for the asymptotic 
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stability of the stationary rotation of a deformable system. 

Fig.1 Fig.2 

This result has been proved directly by determining the signs of the coefficients of the 
leading terms in the Sturm series polynomials for the special case of an axisymmetric con- 
struction with four radial booms, allowing for low-frequency elastic oscillations /7/. The 
boundaries of the stability region (curve 1 in Fig.11 have the following physical meaning: the 
rotation of the deformable system is stable relative to the axis of the maximum moment of 
inertia only when this moment exceeds the other principal moments of inertia by some quantity 
dependent on the elastic characteristics of the system. This quantity vanishes if the rigidity 
C of the system increases to infinity, if the velocity of rotation a0 decreases, and, finally, 
if the inertial coupling coefficients d,,,d,, are small, e.g., due to the small mass and 
size of the deformable elements. 

If there are no substantial energy losses in the elastic body, then, alongside the region 
of asymptotic stability, there may also exist a region of temporary gyroscopic stabilization, 
which unlike secular asymptotic stability breaks down in an infinite time interval. A 
necessary condition of gyroscopic stabilization is that the matrix of conservative forces K, 
has even negative roots. In Fig.1, the region of gyroscopic stabilization is shownbyvertical 
shading below curve 2. In a real mechanical system, even small dissipative forceswilldestroy 
this region over time. If the system is non-conservative, then domains of strong instability 
may form inside the region of gyroscopic stability. An example of such domains for the eddy 
motion of a fluid completely filling a rotating cylindrical vessel is given in /8/. 

3. AS an example (Fig.21, consider the stability of rotation of a body with an axisym- 
metric cavity filled with an ideal incompressible fluid. The free surface of the fluid X 
supports a circular plate with bending rigidity Do and median stress To. The longitudinal 
axis of the body OZ, is the axis of syaraetry of the cavity along which the load I1 isapplied. 
Potential fluid flow is assumed. In this case, the fluid velocity potential 6, and the de- 
formation u of the plate satisfy the following system of boundary-value problems: 

VW =.O, a@ /L%' Is = (r X V).O, &D/L%' Iz = du/dt + (r x y).~ (3.1) 

p”6088datB + D"VWu - T”V*u = --pl [am/at + j,zl + I/* (Vqa _ 
(0 x r).VQ) + c (t)] 

lb lr. = 0, au/an jr+ = 0, u IL < 00, vu I2 < o. 

Here to be specific we assume rigid clamping conditions: Y is the unit vector of the 
outer normal to the surface of the fluid s-t I, where S is the wetted surface of the cavity; 
n is the unit vector of the outer normal to the plate contour r., p", 6" are the density and 
the thickness of the plate, and p1 is the fluid density. 

Investigation of the free oscillations of a fluid in a mass force field leads to the 
boundary-val;e problem 

(3.2) 

This problem has an infinite discrete spectrum of eigenvalues Xi and the corresponding 
complete system of functions et. orthogonal on 2. Series-expanding in these functions the 
solution.of the homogeneous linear problem (3.1) for the case of a stationary cavity, we 
obtain the free hydroelastic modes of the plate in the form /9/ 
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(3.3) 

cqn = ]D'V*V'Vi - PV*Vpi + (p'jI - P"600n')VillP'VPi 

Here 0,' are two independent solutions of the homogeneous equationofthe oscillation of 
the plate, and the oscillation frequency o, is the k-th root of the characteristic equation 

&jJ A**EIt7 - 
0 2 - ain (A=B,C; Z=l,Z) 

Al i=l n 

(3.4) 

(3.5) 

4. = XicPi Irr3 ctL = xi*+ 1 an ire 

Using the eigenfunctions v,,, we can also construct a solution of the system of partial 
differential Eqs.(3.1) for the case of a moving cavity. 

u = “n hn. “*)Pn (4 

@ =(%+ nnp,+P,,p,pm).~+cplbinp,' 

(3.6) 

where the components of the vector C2, are the Zhukovskii potentials, and the functions P,, P,,, 
are determined by the non-linear terms of system (3.1). The corresponding boundary-value 
problems with their solutions can be found in /lo/. Assuming that the fluid mass is much 
greater than the mass of the plate, we obtain expressions (1.8) in the form 

where bi, are from (3.3) and the remaining hydrodynamic characteristics of the cavity were 
determined in /lo/. 

In the case of a cavity of revolution, the oscillations of the fluid and the plate fall 
into two groups: a group of oscillations symmetric about the plane OW% and a group of 
oscillations symmetric about the plane OZ,~,. Let the first N modes v, and the corresponding 
cp? in Eqs.(3.6) be even functions relative to the axis Oz, and the following modes "N+?l 
with their corresponding cp? be even functions relative to the axis OZ.. Retaining our 
notation for the first group of generalized coordinates PVL@<N), we replace the coordinates 

pN+n in the second group by qn (n<N). The non-zero coefficients in the formulas (3.7) are 
the following (allowing for the symmetry properties) : 

(3.8) 

The non-zero elements of the matrices (2.2), by formulas (3.7) and (3.8), take the form 

lp+n = llln = bi,li .(3.9) 

N+n = _ 
88 

gin = _ dnn = _ dp = - dp = b,$,,, 

a 
nm= 

1. N+m = _ 
go1 gti 

N+m n = d&“’ = dp N+~I = binb,,,,& 

Substituting these formulas into Eqs.(2.3) and using the orthogonality conditions, we 
see that the equations of the momenta about the longitudinal axis and the equation of forces 
in the direction of this axis degenerate and become decoupled. If the inertia tensor of the 
body is also axially symmetric, then, using the notation 

Jz, = Jr8 = J, r, = p,, - Iqn, 0 = 0, + lul, j = is - iit (3.10) 

we can rewrite the system of Eqs.(2.3) in complex form, 

Jo’ - i (JII’- J) 000 - binI.,,‘ol (r”*‘+ 2&r,’ - &rn) = 0 (3.11) 

bimb,,,Pi ((1 - X) P,,,” + 2*wm,‘) + (a,,, *- (1 -2) 00'1 rm) - bin&i (0’ f f000) = 0 
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Since t=O in formulas (2.12) , the necessary and sufficient condition for asymptotic 
stability (2.13) is simplified in this case. If we allow forthe'orthogonality of the elastic 
oscillation modes of the plate and ignore the non-diagonal temrs in (3.111, then the following 
inequality is sufficient for stability of rotation of a body with a fluid and a plate: 

J,l - J > 
hh”*)* 

b& [a,* - (1 - x) ooal 
(3.12) 

The coefficients h,i, ei, hi are determined by the solutions of the linear boundary-value 
problem (3.21, and the coefficients bi,, o,? are given by formulas (3.31, (3.4). We assume 
that the angular velocity of rotation o 0 is less than any elastic oscillation frequency of 
the plate o,,. For the case of a cylindrical cavity, numerical valuesofthe frequencies o, 
and of the other coefficients in (3.12) were obtained in /9/ for various bending rigidities, 
stresses, and loads. 
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